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How effective iIs my model?

« Choice of metric is important
« Confusion Matrix
* Accuracy
* Precision
* Recall/ Sensitivity
« Specificity
 F1 Score
« AUC (Area Under Curve)

« MAE (Mean Absolute Error)
« MSE (Mean Squared Error)

UKZN INSPIRING GREATNESS



Confusion Matrix

1: a person has Cancer; 0: a person does not
Many metrics are based on the CM
Minimisation depends on use case
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https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-
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Accuracy

* "How much did | get correct?”
 Useful when dataset labels are balanced: not the case in the real world!
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Precision

* Proportion of patients predicted to have cancer, that actually have cancer
* "How much did we catch”
« Goal: Minimise False Positives

Positive Negative
TP % \:P FPJ
3
o
TP + FP
FN TN

Negative

UKZN INSPIRING GREATNESS



Recall

* Proportion of patients that actually have cancer, predicted by model

* “How much did we miss”
« Goal: Minimise false negatives
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Specificity

« Proportion of patients that actually do NOT have cancer, predicted by model
« Exact opposite of Recall
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F1 Score

« Difficult to compare models with low precision, high recall (vice versa)
* F1-score: best of both worlds

« Harmonic Mean to address precision-recall imbalance

* Punishes the extreme values more

2 X precision X recall

precision + recall
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ROC Curve (Recelver operating characteristic)

Recall: Logistic Regression returns a probability
Interpreted with a Classification/ Decision Threshold
Threshold is problem dependent

TPR vs FPR at different classification thresholds
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AUC: Area under ROC curve

Lowering classification threshold classifies more items as positive
Model performance across all classification thresholds

Degree of separability of model | classifier AOCeure
AUC = 1: 100% correct predictions
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“Probability that the model ranks a random positive
example more highly than a random negative example”
False positive rate
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Mean Absolute Error

« Used for regression models
« Average difference between original and predicted values
* No indication of direction of error

.
7T ¥3l

27 ;"2'

=] L E=Y [Sa] [=4] - [==]

¥y — ¥l

N
1 N\
MAE = — > |y; = ¥
N
1=1
https://jmlb.github.io/flashcards/2018/07/01/mae_vs_rmse/
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Mean Squared Error

« Effect of larger errors are more pronounced
« RMSE: Root MSE: useful when larger errors are undesirable

CASE 1: Evenly distributed errors CASE 2: Small variance in errors CASE 3: Large error outlier
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https://www.slideshare.net/kushkul/performance-metrics-for-machine-learning-algorithms
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Resources

« https://developers.google.com/machine-learning/crash-course/classification/true-
false-positive-negative

e https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-quide

 https://www.kdnuggets.com/2018/04/right-metric-evaluating-machine-learning-
models-1.html
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https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234:~:text=Area%20Under%20Curve(AUC)%20is,a%20randomly%20chosen%20negative%20example
https://www.kdnuggets.com/2018/04/right-metric-evaluating-machine-learning-models-1.html

Discussion:

What makes a good ML model?

EDGEWOOD CAMPUS HOWARD COLLEGE CAMPUS NELSON R MANDELA SCHOOL OF MEDICINE PIETERMARITZBURG CAMPUS WESTVILLE CAMPUS

UKZN INSPIRING GREATNESS




