Performance Metrics for ML

Asad Jeewa

DS-I Africa Machine Learning Short Course 23/01/2023

Day One

UNIVERSITY OF

HOWARD COLLEGE CAMPUS

EDGEWOOD CAMPUS

How effective is my model?

- Choice of metric is important
 - Confusion Matrix
 - Accuracy
 - Precision
 - Recall/ Sensitivity
 - Specificity
 - F1 Score
 - AUC (Area Under Curve)
 - MAE (Mean Absolute Error)
 - MSE (Mean Squared Error)

Confusion Matrix

- 1: a person has Cancer; 0: a person does not
- Many metrics are based on the CM
- Minimisation depends on use case
- Extended for multiclass classification

https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826

Accuracy

- "How much did I get correct?"
- Useful when dataset labels are balanced: not the case in the real world!

$$\frac{TP + TN}{TP + FN + TN + FP}$$

Precision

- Proportion of patients predicted to have cancer, that actually have cancer
- "How much did we catch"
- Goal: Minimise False Positives

$$\frac{TP}{TP + FP}$$

Recall

- Proportion of patients that actually have cancer, predicted by model
- "How much did we miss"
- Goal: Minimise false negatives

$$\frac{TP}{TP + FN}$$

Specificity

- Proportion of patients that actually do NOT have cancer, predicted by model
- Exact opposite of Recall

$$\frac{TN}{TN + FP}$$

F1 Score

- Difficult to compare models with low precision, high recall (vice versa)
- F1-score: best of both worlds
- Harmonic Mean to address precision-recall imbalance
- Punishes the extreme values more

$$\frac{2 \times precision \times recall}{precision + recall}$$

ROC Curve (Receiver operating characteristic)

- Recall: Logistic Regression returns a probability
- Interpreted with a Classification/ Decision Threshold
- Threshold is problem dependent
- TPR vs FPR at different classification thresholds

$$TPR = \frac{TP}{TP + FN} = Recall$$

$$FPR = \frac{FP}{FP + TN} = 1 - Specificity$$

AUC: Area under ROC curve

- Lowering classification threshold classifies more items as positive
- Model performance across all classification thresholds
- Degree of separability of model
- AUC = 1: 100% correct predictions

"Probability that the model ranks a random positive example more highly than a random negative example"

- Actual Negative
- Actual Positive

Mean Absolute Error

- Used for regression models
- Average difference between original and predicted values
- No indication of direction of error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

https://jmlb.github.io/flashcards/2018/07/01/mae_vs_rmse/

Mean Squared Error

- Effect of larger errors are more pronounced
- RMSE: Root MSE: useful when larger errors are undesirable

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

https://www.slideshare.net/kushkul/performance-metrics-for-machine-learning-algorithms

Resources

- https://developers.google.com/machine-learning/crash-course/classification/truefalse-positive-negative
- https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide
- https://www.kdnuggets.com/2018/04/right-metric-evaluating-machine-learning-models-1.html

Discussion:

What makes a good ML model?

