Machine learning – introduction

Till Bärnighausen

DS-I Africa Short course UKZN, Durban 23 January 2023

HEIDELBERG H UNIVERSITY FA HOSPITAL M

DS-LAfrica Data Science for Health Discovery and Innovation in Africa

Machine learning is a type of AI

AI = artificial intelligence, ML = machine learning, DL = deep learning

MSNBC

With layoffs, tech companies are quickening the robot revolution

With layoffs, tech companies are quickening the robot revolution

Google, Microsoft and others in Big Tech have announced massive job cuts, as the companies pivot to artificial intelligence projects. What does it mean?

Jan. 21, 2023, 2:36 AM EAT **By Ja'han Jones**

The robot revolution appears to be in full swing.

Google is just the latest company to announce major job cuts said to align with its prioritization of artificial intelligence.

Industries far and wide are pivoting to AI, which – shameless plug – you may have anticipated if you read my end-of-year ReidOut Blog post on 2023 being an important year for the development of artificial intelligence technology.

our course located? **A FRAMEWORK OF MACHINE** LEARNING **METHODS**

Clustering analyses can identify types

OVERVIEW

- Centroid k means, k medoids, k prototypes ...
- *Distribution* EM, GMM, BMM, ...
- Connectivity hierarchical, ...
- **Density** DBSCAN, ADBSCAN, HDBSCAN, ...

EM = expectation-maximization, GMM = Gaussian mixture model, BMM = Bernoulli mixture model, DBSCAN = density-based spatial clustering of applications with noise, ADBSCAN = adaptive DBSCAN, HDBSCAN = hierarchical DBSCAN

Dimension reduction can reduce complexity and identify latent constructs and

OVERVIEW

- Linear PCA, SVM, LDA, ...
- Non-linear kernel PCA, FAMD, t-SNE, ...

PCA = principal component analysis, SVM = support vector machine, LDA = linear discrimnant analysis, FAMD = factor analysis for mixed data, t-SNE = t-distributed stochastic neighbor embedding

Feature selection can reduce complexity and cost

OVERVIEW

- Supervised
 - Filter information gain, correlation, chi-squared, ...
 - Wrapper forward, backward, stepwise, exhaustive
 - *Embedded* RF, regularization, ...
- **Unsupervised** variance, multicollinearity, incompleteness, ...

Causal analyses is the traditional mainstay of				
epidemiology overview		Control of unobserved confounding	Assumptions	
Experiments		Complete	Weak	
Quasi-experiments				
 Instrumental variable approaches Regressions discontinuity 	}	Complete	Less weak	
 Difference-in-differences approaches Fixed effects approaches 	}	Partial	Less weak	
 Non-experiments 				
 Regression Matching Stratification 	}	None	Strong	

Bärnighausen et al. Journal of Clinical Epidemiology 2017

Our course focuses on prediction

OVERVIEW

- Regression
 - SVM
 - Decision trees
 - RF
 - kNN
 - Neural networks
 - ..

- Classification
 - kNN
 - Logistic regression
 - LDA
 - QDA

. . .

- Naïve Bayesian
- Neural networks

SVM = support vector machine, RF = random forest, kNN = k nearest neighbors, LDA = linear discriminant analysis, QDA = quadratic discriminant analysis

Causal and predictive analysis require very different approaches

COMPARISON

PSM = propensity score matching, IV = instrumental variable analysis, RDD = regression discontinuity design, kNN = k nearest neighbors

	Causation	Prediction	
Disciplines	EpidemiologyEconomics	Machine learningComputer science	
Foundation	Theory-basedHypothesis testing	 Data-driven 	
Purposes	UnderstandingPolicy guidanceRegulatory approval	Intervention targetingIntervention tailoringNow- and forecasting	
Goal of approach	Minimize/eliminate bias	 Optimize bias-variance trade-off 	
Approach	Estimation	 Training-(validation)- testing Complexity reduction 	
Example	 Ordinary multiple regression PSM IV and RDD 	 Regularized multiple regression kNN Neural networks 	

For best prediction, we trade-off bias and variance

Source: https://www.geeksfor geeks.org/ml-biasvariance-trade-off/

How can we reduce overfitting in ML?

APPROACHES

• Data

- Adding training data
- Data augmentation
- Adding noise

Features

- Feature selection
- Dimension reduction
- Regularization (Ridge, Lasso)

Algorithm-specific

- Pruning (trees)
- Bagging of weakly correlated trees (forests)
- Dropping out layers (neural networks)

High training error High test error Low training error Low test error Overfit (high variance)

Low training error High test error

Source:

https://www.linkedin.com/pulse/overfittingunderfitting-machine-learning-ml-concepts-com

There are excellent introductory textbooks ...

EXAMPLES

Basic to intermediary

Springer Series in Statistics Trevor Hastie Robert Tibshirani Jerome Friedman **The Elements of Statistical Learning** Data Mining, Inference, and Prediction

Second Edition

🖄 Springer

... and online resources for machine learning

In this short course, we will use the R programming language

PROGRAMMING LANGUAGES

- **Procedural** C, Java
- Functional R, Scala
- **Object-oriented** Python, Java
- *Scripting* Python, Ruby
- *Logic* Prolog

In the coming two weeks, we will cover ML concepts, concrete methods, and applications

COURSE OVERVIEW

- General approaches
 - Feature selection
 - Validation / cross-validation
 - Parameter tuning to reduce overfitting
 - Performance metrics

Concrete methods

- Regression / logistic regression
- Ridge and lasso regression
- kNN
- Naïve Bayes
- LDA / QDA
- -SVM
- Trees and forests
- Boosting

In the coming two weeks, we will cover both ML general approaches and concrete predictive methods COURSE OVERVIEW

- General approaches
 - Feature selection
 - Validation / cross-validation
 - Parameter tuning to reduce overfitting
 - Performance metrics

Concrete predictive methods

- Regression / logistic regression
- Ridge and lasso regression
- kNN
- Naïve Bayes
- LDA/QDA
- SVM
- Trees and forests
- Boosting